Clean Winemaking Method

An Approach to Low-Risk Winemaking

Objectives

- What is clean winemaking?
- Stages of winemaking.
- Purpose in each stage.
- Demarcation Events.
- Questions and discussion.



Photo Courtesy of Blaine Hunt

What is Clean Winemaking?

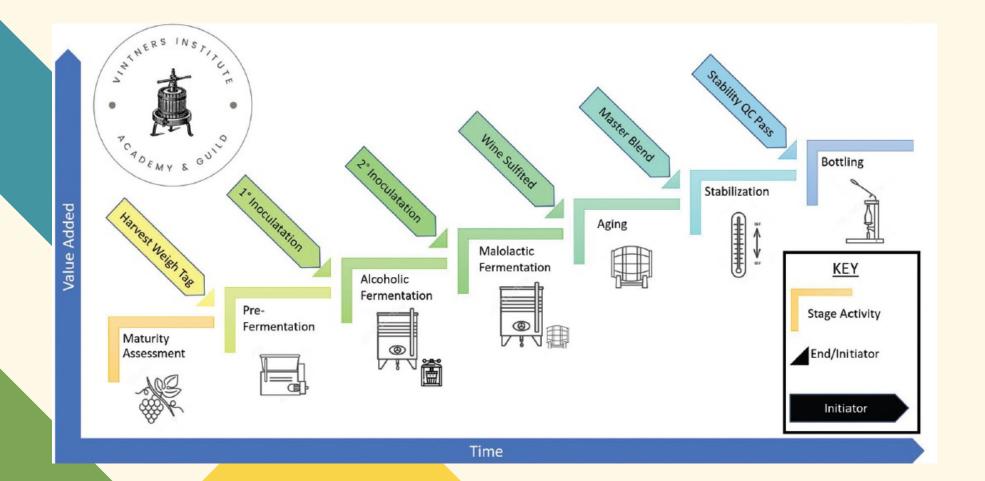
- Method developed by Brian Avila
- Clean winemaking is a theoretical, lowest risk style of winemaking which employs best practices for making wine. This approach will produce a wine of good quality.
- The resulting wines from this process are fruity, dry (no sugar) and without sediment, haze or bubbles
- Theoretical approach to make a good wine
- Is based in winemaking science
- Lowest common denominator based on accepted practices

- Minimizes risk for off flavors and oxidation
- Model for future learning
- Allows for development of stylistic expression
- Teaches quality management
- Not to be viewed the right way
- Provides framework for lifelong learning in the field

What is Clean Winemaking?

For example, performing native yeast fermentations can spoil a wine if done carelessly however, under the trained eye this process adds mouthfeel and complexity to a wine.

Therefore, not part of the clean winemaking method.


Clean Winemaking - The foundation

Ferment with native yeast once you have established a sound foundation base.

Stylistic Expression

Experience & Knowledge

Clean Winemaking Skills

Maturity Assessment - Stage 1

Primary Purpose: To monitor grape ripening in the vineyard for optimal flavor and chemistry.

Begins: Veraison End: Harvest

- Brix, pH and TA monitoring.
- · Communication with grower.
- Estimating harvest date.

- Equipment check
- Organize crew and support.
- · Order supplies.
- Clean equipment.

Pre-Fermentation- Stage 2

The primary purpose of the pre-fermentation is to get the grapes into the best chemical and physical state <u>prior</u> to <u>fermentation</u>.

Begins: Harvest

End: Inoculation with wine yeast.

Pre-Fermentation – What's Happening?

- Addition of a low dose of sulfites
- Test Brix, pH, TA, and YAN
- Corrections to must or juice
- Settling of pressed juice
- Cold soak
- Optional addition of tannins, enzymes, and polysaccharides

Alcoholic Fermentation (AF)- Stage 3

Primary Purpose: Ferment available sugars are into alcohol.

Begins: Inoculation with wine yeast

End: AF dry (less than 1 gram per liter of sugar)

- AF is the process where the alcohol tolerant yeasts (Saccharomyces cerevisiae) ferments glucose and fructose to produce ethanol, heat and carbon dioxide.
- The winemaker may manipulate many variables in this production process to stabilize color, influence aroma development, mouthfeel and flavor.

Alcoholic Fermentation Continued

- Daily tasting and monitoring provide feedback when to intervene.
- Cap Management and Punch Downs Risk of spoilage
- Residual sugar creates additional risk of spoilage
- Ferment to Dryness -2° Brix
- Wine has residual sugar at 0° Brix
- Send to lab for testing to be 100% certain

Primary Purpose:

Malolactic bacteria consumes malic acid to further stabilize the wine while adding complexity.

Begins: Inoculation with malolactic bacteria (MLB) once AF is dry

End: MLF dry. (means less than 0.3 grams of malic acid is left in the wine (<0.3g/L MA))

Important Note:

Malic acid is a metabolizable compound that may lead to haze formation and off aromas in the bottle if not tended to.

MLF - Continued

- MLF elevates pH, which creates an additional risk of spoilage.
- Following dryness of alcoholic fermentation, seize the residual heat of this fermentation by inoculating asap and monitoring this second ferment to dryness.
- Converting malic acid to lactic acid makes wine more stable.
- If not going through ML, need to manage to prevent MLF in bottle.

Aging – Stage 5

Primary Purpose:

Using time and non-metabolic chemical processes to further shape wine flavor.

Begins: Molecular Sulfite Addition added once all fermentations are dry.

End: Master blend is created.

Note: A Sulfite addition to achieve 0.5 - 0.8 molecular of free SO2 is added

Aging – Master Blend

- Decisions must be made regarding wine refinements on path toward the final blend, aka <u>master blend</u>.
- Master blend is created when no more adjustments to wine are needed.

Aging – What's Happening?

- Allows wine to mellows or smooths out
- All microbial processes stopped or have been halted.
- Allows soften tannins
- Settle out solids
- Introduce oak flavors using barrels, cube, chips or staves
- Allow breakdown of lees in the case of sur lie aging.
- Other treatment required to nudge the wine toward the Master Blend.

- · Fining agents added and racking
- Coarse filtration during racking of wine
- Bench trials working toward master blend
- · Blending other wines
- Monthly monitoring of free SO₂

Stabilization – Stage 6

Primary Purpose:

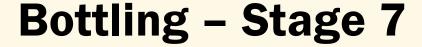
To ensure that wine will not develop <u>unwanted</u> haze, sediments, discoloration, off aromas or effervescence once in bottle.

Beginning: Master blend is created

End: Master blend is stable and passes QC

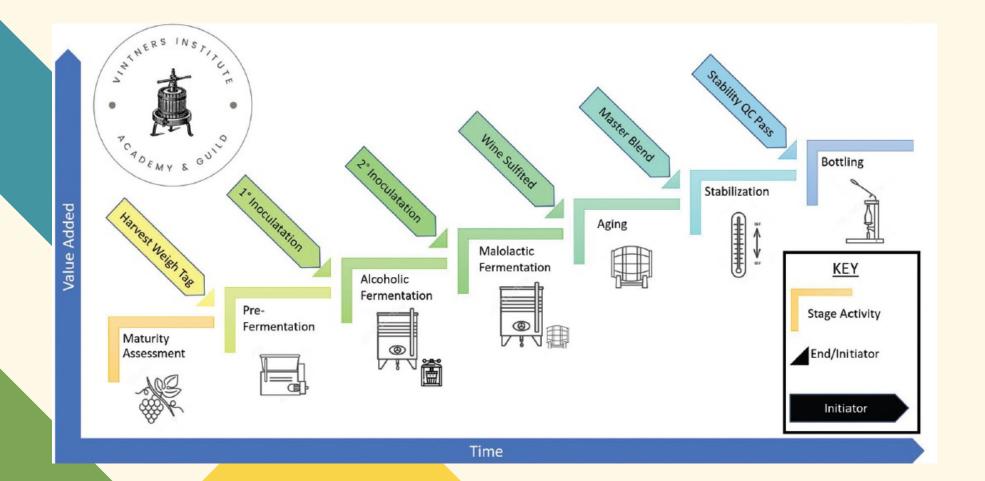
Involves <u>testing master blend</u> and making remedial actions to remove any potential instabilities are before bottling.

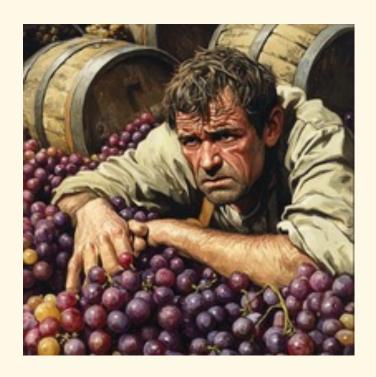
A minimum standard for the perception of a <u>quality</u> wine is one that does not show any <u>unintended</u> hazes, precipitates, fizziness, or off aromas.


Stabilization – Big Three

- Monitor microbial risk level if considering bottling unfiltered.
- Heat stabilize for protein haze bentonite
- Cold stabilize for tartrates chill wine.
- Final adjustment for free SO₂
- Sterile filtering a few days before bottling.
- Stage completed at QC Pass

The Big Three


- 1. Microbial Stability
- 2. Heat Stability
- 3. Cold Stability



Master Blend passes all QC steps begins stage

- Winemakers must ensure that the bottle is filled and fit with a suitable cork or closure, making sure that the wine is not damaged in the process.
- Bottling symbolizes the end of the road for the vintage. It frees up barrels and tanks for the coming vintage.
- Sterile or polish filtering in some cases.
- Proper closure selection. How long will wine be in bottle?

Questions and Discussion

Blaine Hunt in September 2012